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SIMULATING DYNAMIC RIDE CHARACTERISTICS 

OF PNEUMATIC TIRES 

A. S. Lessera 

In a program of research in vehicle dynamics, the U. S. Army Engineer 

Waterways Experiment Station has developed and verified a mathematical 

model for the case of a pneumatic tire traversing noudcforming obstacles, 

with ü-^ro slip. Data used to calculate model parameters and to produce 

time histories of dynamic responses were obtained in jaboratory tests with 

9.00-lU tires under several conditions of ply raling and inflation pressure. 

The model that has been used often in vehicle dynamics studies to rep ■ 

resent a pneumatic tire '(for example, see references 1 and 2) is shown in 

fig. 1. The spring element represents the ability of the tire to recover 

its original shape in the absence of deforming forces; the dashpob element 

(when it is included) represents the dissipation of energy in the tire by 

viscous damping. Contact between tire and terrain is at a single point, 

and forces are transmitted through the tire to the axle in the vertical 

direction only. 

The basic idea for the tire model described herein is to represent the 

tire by many spring elements, as shown in fig. 2. This accounts for physi- 

cally significant contributions of horizontal forces transmitted to the 

axle. For simplicity, dashpot elements were not included. 

When the pneumatic tire is represented by many spring elements, the 

displacement forcing function for one spring element need not be the same 

as that for the neighboring spring. This foature permits small-size 
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terrain features with abrupt changes in slope to be "enveloped" by the 

model. As each spring element is deflected, the spring force produced and 

transmitted to the vehicle axle is determined. Knowledge of the magnitude 

and location of this force permits a force vector to be computed and re- 

solved into horizontal and vertical components. The contributions of the 

individual elements are summed vectorially and used as inputs to the mathe- 

matical model that represents the vehicle. 

To-convert the basic idea for the tire model into practical form, pro- 

cedures were developed for division of the pneumatic tire into segments, 

calculation of spring coefficients for the segments, and conversion of ter- 

rain profiles into separate displacement forcing fimctions for the segments. 

That portion of the tire carcass that undergoes flexing and deforma- 

tion at any instant is identified as the "active region" (see fig. 3). This 

region was assumed constant in size and large enough to include most antici- 

pated fluctuations in the size of the ground contact area. In reality, as 

the tire traverses irregular terrain, the sizes of both the active region 

and the tire contact area vary. As the tire rotates, different portions of 

the carcass are swept into, and out of, the active region. Thus, instead 

of attention being focused on a particular portion of the tire as it ro- 

tates about the axle, a nonrotating area between the terrain and the axle 

is monitored. This nonrotating active region is divided into segments (see 

fig. 3)- These segments are fixed in position with respect to one another, 

and may be regarded as boundaries through which the physical tire passes 

during rotation. 

The load-deflection curves for a pneumatic tire, shown in fig. h, 

represent conditions for which large-scale carcass flexing occurs. These 

iismmäiä 
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curves can be regarded as the result of joint contributions of many seg- 

ments acting together, since a larger area of carcass is involved n re- 

straining the load as more load is applied. From these curves the small- 

scale flexural properties of any one segment in the active region can be 

inferred. 

A concept of "effective radial deflection" was developed as an aid in 

calculating segment spring coefficients. In this concept, illustrated in 

fig. 5> the actual segment deflection encountered during a load-defLocoion 

test is replaced by a fictitious uniform radial deflection, A . The effec- 

tive radial deflection of each segmenl varies as the deflection varies at 

the vertical reference position. 

The flexure property of the tire carcass conlained wlohin each segment 

boundary is represented by a linear spring with coefficient K , which is 

the same for all segments. The spring is positioned along the radial 

center line of each segment. With the location of each segment with respect 

to the vertical reference position known, the magnitude and line of action 

of the force due to deflection of each spring can be determined. In an ex- 

perimental setup for recording quasi-static load-deflection curves, a load 

cell registers the total vertical force exerted by the ueflected tire car- 

cass. The link between the analytical representation of the tire and the 

physical reality of its load-deflection curve can be made by using an equa- 

tion of static equilibrium as follows: 

F = 2 IX cos 0. 1 (1) 

1=1 
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where . 

F = Load cell reading, lb 

K = Segment spring coefficient, lb/in. 

A. = Effective radial deflection, i  segment, in. 

0. = Force direction angle, i  segment, radians 

n = Number of segments each side of vertical reference position 

To apply this analytical representation to a specific tire, one point on 

the load-deflection curve for that tire mus'-. bo used to calculate K in 

equation 1. If a value of carcass deflection, 6 , at the vertical reference 

position is selected (for instance 6=1 in.), and if the load cell output, 

F, , corresponding to this selection is read from a load-deflection graph, 

then K can be computed as: 

K = (2) 

2 y   A. cos 6. 

1=1 

In this equation, the values of A.  corresponding to 6=1 in. are read 

from a graph (fig. 6) of effective radial deflection versus carcass deflec- 

tion, and the values of cos 2$  are fixed by section geometry. 

Once K is calculated, this value can be used in equation 1 to define 

the analytical load-deflection curve. Thus, any other 6 may be selected 

and corresponding A.  obtained from the effective radial deflection graph. 

The.'se values of A. , together v/ith the known values of cos $. . ,  are put / 

into equation 1 to compute the load corresponding to the selected deflec- 

tion. An experimental load-deflection curve is compared in fig. 7 to 

several points produced by equation 1 using a K value determined at 

h 
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6 = 1 in.    This value was chosen on the ascending portion of the experi- 

mental load-deflection curve.    The use of a linear,  constant-coefficient 

spring as representative of the flexing of a segment of tire carcass appears 

t-,o be reasonable. 

With the rotating tire Kiathematically represented by a stationary seg- 

mented active region,  the nondeformable terrain profile encountered by the 

tire is represented as a displacement function that traverses the active 

region.' The segments are deflected in sequence, by the displacement func- 

tion, as illustrated in fig.  8.    The time of application and tue deflection 

amplitude are respectively different for each segment. 

The computer implementation of the model must provide for generation of 

a terrain profile function.    This function must he shifted in time to account 

for its sequential encounters with the segments, and it must be changed in 

amplitude to account for dynamic motions of the tire-vehicle system. 

To evaluate the segaiented-tire model,  controlled tests were conducted 

in the laboratory with a single-wheel test carriage.    The model of the tire 

and the model of the carriage were combined,  as shown in fig.  9« 

•The model of the tire was organized with the active region divided into 

10 segments, and the segment spring coefficients were calculated for several 

inflation pressures.    Numerical values for the carriage spring and damping 

coefficients were obtained by repeating the obstacle tests using a rigid 

aluminum wheel,-thus revealing the dynamic properties of the carriage alone. 

The values obtained were reasonably independent of carriage speed. , 

In writing the equations of motion,  it was assumed that (a) the obstacle 

does not deform,  (b) there is no slip between tire and obstacle under towed 

conditions,  (c) no forces are generated parallel to the wheel axle,   (d) the 
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carriage towing speed remains constant, and (e) the pneumatic wheel load 

remains constant.    The equations are: 

10 

where 

mz =    V     ^i cos ^i " ]BV z - g    m + — o i     _   g 

i=l / 

10 

mx =    )       KAi sin ^ - I^x - K^x 

A.  = 
i 

i=l 

Y.  - H  .  - z  , Y.   - H  .  - z > 0 in 'in - 

0 , Y.   - H   .   -  z < 0 '    i        n 

(3) 

(M 

(5) 

and 

F    = 

Horizontal carriage damping coefficient,  lb/in./sec 

Vertical carriage damping coefficient, lb/in./sec 

Pneumatic load applied to tire in excess of,  or in 
opposition to, deadweight load 

g = Acceleration of gravity 

H . n 

K 

m 

x = 

Yi = 

z = 

Threshold height of i  segment in equivalent rigid 
wheel, in. 

Segment spring coefficient, lb/in. 

Horizontal carriage spring coefficient, lb/in. 

Inertial mass of test carriage, lb sec /in. 

Horizontal axle displacement, in. 

Vertical obstacle height beneath i  segment, in. 

Vertical axle displacement, in. 

6 = Center-line static deflection, in. 

= Deflection of i  segment, in. 

^. = Location angle for i  segment 

Ai 
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SäSäSäbi 



ppi^^'^^^g^ - . 

Equation 3 is used to calculate the resultant vertical force, equa- 

tion h the resultant horizontal force, and equation 5 the deflection of 

each segment. This segment deflection, A. , is permitted to have positive 

values only; negative values are replaced by zero. This corresponds to an 

assumption that the tire may only he compressed by the obstacle and not 

stretched by it. 

The rigid-wheel threshold height, H . , is illustrated in fig. 10. 

Each H'. gives the height of the i  segment contact point above the 

ground when the tire has no static deflection. The H . concept serves 

two purposes: first, to permit the tire mode], to display realistic static 

deflections by invoking as many segments as needed to restrain an applied 

load, and second, to modify the height of obstacle displacement functions 

as required by the height of the contact point of each segment. 

Computed and observed horizontal restraining force exerted on the axle 

by the carriage and vertical displacement of the axle, during traversal of 

a 2- by 8-in. rigid, rectangular obstacle, are compared in fig. 11. The 

comparison was essentially qualitative, this being consistent with the use 

of the overly simplified representation of the test carriage. The most 

desired feature of the composite tire-carriage model, the ability to repro- 

duce the basic features of the response wave shapes as seen in the labora- 

tory, was realized; the composite model, through the segmented representa- 

tion of the pneumatic tire, was capable of producing responses with realistic 

wave shapes. The positively and negatively directed horizontal restraining 

forces and the vertical axle displacements were displayed with basically 

correct form. If a point-contact model had been used, the duration of the 

response would have been identical with the time for the point to traverse 

7 
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the obstacle. The multiple-contact model under discussion produces responses 

whose durations are realistically extended "beyond the corresponding obstacle 

traversal time. Horizontal input to the axle from a point-contact model can 

be obtained only b""" special computing techniques for estimating the angular 

position of the resultant force acting on the wheel. The prediction of 

horizontal responses is a natural product of the segmented system. 

A quantitative comparison of the computed and observed responses re- 

vealed several discrepancies that were related to the simple linear model 

of the test-carriage and to the finite number of segments in the tire model. 

These can be overcome by more refined modeling (reference 3). 

SUMMARY 

The data shown indicate that a mathematical representation of a pneu- 

matic tire,  in terras of the deflections of many radial segments,  success- 

fully displays the essential feature of horizontal and vertical forces 

transmitted through the tire.    It is indicated further that the  segmented 

tire model enables realistic predictions to be made of the displacement and 

force time histories for a pneumatic tire towed over a rigid obstacle. 
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